СВЕРХКРИТИЧЕСКИЕ ФЛЮИДЫ В НАНОПОРАХ И НА ПОВЕРХНОСТИ МИНЕРАЛОВ И ЦЕМЕНТНЫХ ФАЗ В УСЛОВИЯХ ГЕОЛОГИЧЕСКОГО ЗАХОРОНЕНИЯ CO₂

Калиничев А.Г. 1,2

¹ Laboratoire SUBATECH (UMR 6457 - Institut Mines-Télécom Atlantique, Université de Nantes, CNRS/IN2P3), Nantes, France

² Международная лаборатория суперкомпьютерного атомистического моделирования и многомасштабного анализа НИУ ВШЭ, Москва

kalinich@subatech.in2p3.fr

Подземная закачка сверхкритической углекислоты в отработанные нефтегазовые резервуары – не только один из эффективных способов повысить нефтеотдачу, но также и многообещающий способ снизить антропогенные выбросы СО2 атмосферу. Подобные же технологии "улавливания и захоронения углерода" (англ. geological carbon capture and sequestration - CCS) разрабатываются и в применении ко многим другим геологическим формациям. Однако, для их крупномасштабного применения важно уметь оценивать и прогнозировать физико-химическую эволюцию сложных флюидов, имеющих в своей основе сверхкритическую СО2, и их взаимодействие с вмещающими породами (глины, кварц, базальт, и т.п.), а также цементными стенками скважин. Поэтому для минимизации возможных рисков окружающей среде и оптимизации технологий CCS нужно глубокое понимание молекулярных механизмов взаимодействия минеральных И цементных фаз c СО₂-содержащими сверхкритическими флюидами и путей их транспорта в нанопоровом пространстве таких материалов.

Методы атомистического компьютерного моделирования позволяют построить необходимую внутренне согласованную картину взаимодействия сверхкритической CO_2 с различными материалами, тем самым значительно продвигая понимание влияния конкретного состава и структуры минерального субстрата на структуру, динамику и реакционную способность CO_2 -содержащих флюидов на поверхности и в нанопоровом пространстве таких субстратов. В докладе будет представлен обзор новых результатов атомистического моделирования таких материалов в контакте со сверхкритическими флюидами состава CO_2 - CO_2 - CO_3 - CO_4 при CO_4 - CO_4 - CO_4 - CO_4 при CO_4 - CO_4 -